A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines

Yijun Zhao, Bilal Ahmed, Thomas Thesen, Karen E. Blackmon, Jennifer G. Dy, Carla E. Brodley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Visual detection of lesional areas on a cortical surface is critical in rendering a successful surgical operation for Treatment Resistant Epilepsy (TRE) patients. Unfortunately, 45% of Focal Cortical Dysplasia (FCD, the most common kind of TRE) patients have no visual abnormalities in their brains' 3D-MRI images. We collaborate with doctors from NYU Langone's Comprehensive Epilepsy Center and apply machine learning methodologies to identify the resective zones for these MRI-negative FCD patients. Our task is particularly challenging because MRI images can only provide a limited number of features. Furthermore, data from different patients often exhibit inter-patient variabilities due to age, gender, left/right handedness, etc. In this paper, we introduce a new approach which combines the restricted Boltzmann machines and a Bayesian non-parametric mixture model to address these issues. We demonstrate the efficacy of our model by applying it to a retrospective dataset of MRI-negative FCD patients who are seizure free after surgery.

Original languageEnglish
Title of host publicationKDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages373-382
Number of pages10
ISBN (Electronic)9781450342322
DOIs
Publication statusPublished - 13 Aug 2016
Externally publishedYes
Event22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 - San Francisco, United States
Duration: 13 Aug 201617 Aug 2016

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume13-17-August-2016

Conference

Conference22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016
Country/TerritoryUnited States
CitySan Francisco
Period13/08/1617/08/16

Keywords

  • Bayesian non-parametric
  • Mixture models
  • Predictive medicine
  • Restricted Boltzmann machine
  • Semi-supervised learning and application

Fingerprint

Dive into the research topics of 'A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines'. Together they form a unique fingerprint.

Cite this