TY - GEN
T1 - A robust person detector for overhead views
AU - Ahmed, Imran
AU - Carter, John N.
PY - 2012
Y1 - 2012
N2 - In cluttered environments the overhead view is often preferred because looking down can afford better visibility and coverage. However detecting people in this or any other extreme view can be challenging as there is a significant variation in a person's appearances depending only on their position in the picture. The Histogram of Oriented Gradient (HOG) algorithm, a standard algorithm for pedestrian detection, does not perform well here, especially where the image quality is poor. We show that on average, 9 false detections occur per image. We propose a new algorithm where transforming the image patch containing a person to remove positional dependency and then applying the HOG algorithm eliminates 98% of the spurious detections in noisy images from an industrial assembly line and detects people with a 95% efficiency.
AB - In cluttered environments the overhead view is often preferred because looking down can afford better visibility and coverage. However detecting people in this or any other extreme view can be challenging as there is a significant variation in a person's appearances depending only on their position in the picture. The Histogram of Oriented Gradient (HOG) algorithm, a standard algorithm for pedestrian detection, does not perform well here, especially where the image quality is poor. We show that on average, 9 false detections occur per image. We propose a new algorithm where transforming the image patch containing a person to remove positional dependency and then applying the HOG algorithm eliminates 98% of the spurious detections in noisy images from an industrial assembly line and detects people with a 95% efficiency.
UR - http://www.scopus.com/inward/record.url?scp=84874566673&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84874566673
SN - 9784990644109
T3 - Proceedings - International Conference on Pattern Recognition
SP - 1483
EP - 1486
BT - ICPR 2012 - 21st International Conference on Pattern Recognition
T2 - 21st International Conference on Pattern Recognition, ICPR 2012
Y2 - 11 November 2012 through 15 November 2012
ER -