TY - JOUR
T1 - An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping
AU - Ullah, Israr
AU - Aslam, Bilal
AU - Shah, Syed Hassan Iqbal Ahmad
AU - Tariq, Aqil
AU - Qin, Shujing
AU - Majeed, Muhammad
AU - Havenith, Hans Balder
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - Landslides triggered in mountainous areas can have catastrophic consequences, threaten human life, and cause billions of dollars in economic losses. Hence, it is imperative to map the areas susceptible to landslides to minimize their risk. Around Abbottabad, a large city in northern Pakistan, a large number of landslides can be found. This study aimed to map the landslide susceptibility over these regions in Pakistan by using three Machine Learning (ML) techniques, specifically Linear Regression (LiR), Logistic Regression (LoR), and Support Vector Machine (SVM). Several influencing factors were used to identify the potential landslide areas, including elevation, slope degree, slope aspect, general curvature, plan curvature, profile curvature, landcover classification system, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), soil, lithology, fault density, topographic roughness index, and road density. The weights of these factors were calculated using ML techniques. The weightage overlay tool is adopted to map the final output. According to three ML models, lithology, NDWI, slope, and LCCS significantly impact landslide occurrence. The area under the ROC curve (AUC) is applied to validate the performance of models, and the results show the AUC value of LiR (88%) is better than SVM (86%) and LoR (85%) models. ML models and final susceptibility map gives good accuracy, which can be reliable for the results. The study’s outcome provides baselines for policymakers to propose adequate protection and mitigation measures against the landslides in the region, and any other researcher can adopt this methodology to map the landslide susceptibility in another area having similar characteristics.
AB - Landslides triggered in mountainous areas can have catastrophic consequences, threaten human life, and cause billions of dollars in economic losses. Hence, it is imperative to map the areas susceptible to landslides to minimize their risk. Around Abbottabad, a large city in northern Pakistan, a large number of landslides can be found. This study aimed to map the landslide susceptibility over these regions in Pakistan by using three Machine Learning (ML) techniques, specifically Linear Regression (LiR), Logistic Regression (LoR), and Support Vector Machine (SVM). Several influencing factors were used to identify the potential landslide areas, including elevation, slope degree, slope aspect, general curvature, plan curvature, profile curvature, landcover classification system, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), soil, lithology, fault density, topographic roughness index, and road density. The weights of these factors were calculated using ML techniques. The weightage overlay tool is adopted to map the final output. According to three ML models, lithology, NDWI, slope, and LCCS significantly impact landslide occurrence. The area under the ROC curve (AUC) is applied to validate the performance of models, and the results show the AUC value of LiR (88%) is better than SVM (86%) and LoR (85%) models. ML models and final susceptibility map gives good accuracy, which can be reliable for the results. The study’s outcome provides baselines for policymakers to propose adequate protection and mitigation measures against the landslides in the region, and any other researcher can adopt this methodology to map the landslide susceptibility in another area having similar characteristics.
KW - Abbottabad
KW - landslide
KW - machine learning
KW - natural hazard
KW - policymakers
UR - https://www.scopus.com/pages/publications/85137584203
U2 - 10.3390/land11081265
DO - 10.3390/land11081265
M3 - Article
AN - SCOPUS:85137584203
SN - 2073-445X
VL - 11
JO - Land
JF - Land
IS - 8
M1 - 1265
ER -