An overview of climate change induced hydrological variations in Canada for irrigation strategies

Ahmad Zeeshan Bhatti, Aitazaz Ahsan Farooque, Nicholas Krouglicof, Qing Li, Wayne Peters, Farhat Abbas, Bishnu Acharya

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)


Climate change is impacting different parts of Canada in a diverse manner. Impacts on temperature, precipitation, and stream flows have been reviewed and discussed region and province-wise. The average warming in Canada was 1.6 °C during the 20th century, which is 0.6 °C above the global average. Spatially, southern and western parts got warmer than others, and temporally winters got warmer than summers. Explicit implications include loss of Arctic ice @ 12.8% per decade, retreat of British Columbian glaciers @ 40–70 giga-tons/year, and sea level rise of 32 cm/20th century on the east coast, etc. The average precipitation increased since 1950s from under 500 to around 600 mm/year, with up to a 10% reduction in Prairies and up to a 35% increase in northern and southern parts. Precipitation patterns exhibited short-intense trends, due to which urban drainage and other hydraulic structures may require re-designing. Streamflow patterns exhibited stability overall with a temporal re-distribution and intense peaks. However, surface water withdrawals were well under sustainable limits. For agriculture, the rainfed and semi-arid regions may require supplemental irrigation during summers. Availability of water is mostly not a limitation, but the raised energy demands thereof are. Supplemental irrigation by water and energy-efficient systems, adaptation, and regulation can ensure sustainability under the changing climate.

Original languageEnglish
Article number4833
Issue number9
Publication statusPublished - 1 May 2021
Externally publishedYes


  • Aquifers
  • Glacier melt
  • Global warming
  • Hydrology
  • Precipitation patterns
  • Sea level rise


Dive into the research topics of 'An overview of climate change induced hydrological variations in Canada for irrigation strategies'. Together they form a unique fingerprint.

Cite this