TY - JOUR
T1 - Blood pressure-lowering and vascular modulator effects of Acorus calamus extract are mediated through multiple pathways
AU - Shah, Abdul Jabbar
AU - Gilani, Anwarul Hassan
PY - 2009/7
Y1 - 2009/7
N2 - This investigation was aimed to provide a pharmacologic basis to the medicinal use of Acorus calamus in cardiovascular disorders. In normotensive anesthetized rats, crude extract of Acorus calamus and its ethylacetate and nHexane fractions caused a fall in mean arterial pressure. In rabbit aorta rings, crude extract was more potent against high K (80 mM), ethylacetate against phenylephrine (1 μM), whereas nHexane fraction was equipotent against both precontractions. Crude extract exhibited a vasoconstrictor effect on baseline. Pretreatment of aortic rings with crude extract and its fractions shifted Ca concentration-response curves to the right, similar to verapamil. Crude extract and ethylacetate fraction suppressed phenylephrine peak formation in Ca-free medium. In rat aorta preparations, crude extract exhibited endothelium-independent relaxation with a vasodilatory effect against high K. nHexane fraction caused an endothelium-dependent Nω-nitro-l-arginine methyl ester-sensitive vasorelaxant along with ryanodine-sensitive vasoconstrictor effect on baseline tension and partially inhibited high K, although ethylacetate fraction caused an endothelium-independent relaxant and endothelium-dependent vasoconstrictor effect. These data indicate that crude extract possesses a combination of effects, relaxant effects mediated possibly through Ca antagonism in addition to a nitric oxide pathway, although the associated vasoconstrictor effects may be meant by nature to offset excessive vasodilatation, thus providing a pharmacologic rationale to its cardiovascular medi-cinal uses.
AB - This investigation was aimed to provide a pharmacologic basis to the medicinal use of Acorus calamus in cardiovascular disorders. In normotensive anesthetized rats, crude extract of Acorus calamus and its ethylacetate and nHexane fractions caused a fall in mean arterial pressure. In rabbit aorta rings, crude extract was more potent against high K (80 mM), ethylacetate against phenylephrine (1 μM), whereas nHexane fraction was equipotent against both precontractions. Crude extract exhibited a vasoconstrictor effect on baseline. Pretreatment of aortic rings with crude extract and its fractions shifted Ca concentration-response curves to the right, similar to verapamil. Crude extract and ethylacetate fraction suppressed phenylephrine peak formation in Ca-free medium. In rat aorta preparations, crude extract exhibited endothelium-independent relaxation with a vasodilatory effect against high K. nHexane fraction caused an endothelium-dependent Nω-nitro-l-arginine methyl ester-sensitive vasorelaxant along with ryanodine-sensitive vasoconstrictor effect on baseline tension and partially inhibited high K, although ethylacetate fraction caused an endothelium-independent relaxant and endothelium-dependent vasoconstrictor effect. These data indicate that crude extract possesses a combination of effects, relaxant effects mediated possibly through Ca antagonism in addition to a nitric oxide pathway, although the associated vasoconstrictor effects may be meant by nature to offset excessive vasodilatation, thus providing a pharmacologic rationale to its cardiovascular medi-cinal uses.
KW - Acorus calamus extract
KW - Antihypertensive
KW - Ca antagonist
KW - NO-mediated
KW - Vasomodulator
UR - http://www.scopus.com/inward/record.url?scp=68249144406&partnerID=8YFLogxK
U2 - 10.1097/FJC.0b013e3181aa5781
DO - 10.1097/FJC.0b013e3181aa5781
M3 - Article
C2 - 19528816
AN - SCOPUS:68249144406
SN - 0160-2446
VL - 54
SP - 38
EP - 46
JO - Journal of Cardiovascular Pharmacology
JF - Journal of Cardiovascular Pharmacology
IS - 1
ER -