Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid

Samuel Kariuki, Chinyere Okoro, John Kiiru, Samuel Njoroge, Geoffrey Omuse, Gemma Langridge, Robert A. Kingsley, Gordon Dougan, Gunturu Revathi

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to β-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa.

Original languageEnglish
Pages (from-to)3133-3139
Number of pages7
JournalAntimicrobial Agents and Chemotherapy
Volume59
Issue number6
DOIs
Publication statusPublished - 1 Jun 2015

Fingerprint

Dive into the research topics of 'Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid'. Together they form a unique fingerprint.

Cite this