TY - JOUR
T1 - Clinical Significance of Rotational Thromboelastometry (ROTEM) for Detection of Early Coagulopathy in Trauma Patients
T2 - A Retrospective Study
AU - Asim, Mohammad
AU - El-Menyar, Ayman
AU - Peralta, Ruben
AU - Arumugam, Suresh
AU - Wahlen, Bianca
AU - Ahmed, Khalid
AU - Khan, Naushad Ahmad
AU - Alansari, Amani N.
AU - Mollazehi, Monira
AU - Ibnas, Muhamed
AU - Al-Hassani, Ammar
AU - Parchani, Ashok
AU - Chughtai, Talat
AU - Galwankar, Sagar
AU - Al-Thani, Hassan
AU - Rizoli, Sandro
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - Background: We aimed to evaluate the clinical significance of abnormal rotational thromboelastometry (ROTEM) findings in trauma patients and investigate the relationships between FIBTEM-maximum clot firmness (MCF), fibrinogen concentration and patient outcomes. Methods: A retrospective cohort analysis was conducted on adult trauma patients who underwent on-admission ROTEM testing between January 2020 and January 2021. Univariate analyses compared data based on injury severity, ROTEM findings (normal vs. abnormal), and initial fibrinogen concentration (normal vs. hypofibrinogenemia). ROC curve analysis was performed to determine the diagnostic performance of FIBTEM A10/MCF for its association with hypofibrinogenemia. Results: A total of 1488 patients were included in this study; the mean age was 36.4 ± 14.2 years and 92% were male. In total, 376 (25.3%) patients had ROTEM abnormalities. Severe injuries (ISS ≥ 16) were associated with a higher shock index, positive troponin T levels, standard coagulation abnormalities, hypofibrinogenemia, and abnormal ROTEM parameters (p < 0.05). These patients also had higher rates of massive transfusions and in-hospital mortality (p = 0.001). Coagulation alterations were significantly associated with higher injury severity score (ISS), shock index, head abbreviated injury score (AIS), hypofibrinogenemia, transfusion need, and mortality (p < 0.05). Hypofibrinogenemic patients were younger, sustained severe injuries, had higher shock indices and coagulation marker levels, required more intensive treatments, had longer hospital stays, and had higher mortality (p < 0.05). A significant positive correlation was found between plasma fibrinogen concentration and FIBTEM-MCF (r = 0.294; p = 0.001). Conclusions: Approximately one-fourth of the patients had early traumatic coagulopathy, as assessed by ROTEM. The FIBTEM A10/MCF may serves as a surrogate marker for plasma fibrinogen concentration. While prior studies have established the link between ROTEM and injury severity, our findings reinforce its relevance across varying trauma severity levels. However, prospective studies are warranted to validate its role within diverse trauma systems and evolving resuscitation protocols.
AB - Background: We aimed to evaluate the clinical significance of abnormal rotational thromboelastometry (ROTEM) findings in trauma patients and investigate the relationships between FIBTEM-maximum clot firmness (MCF), fibrinogen concentration and patient outcomes. Methods: A retrospective cohort analysis was conducted on adult trauma patients who underwent on-admission ROTEM testing between January 2020 and January 2021. Univariate analyses compared data based on injury severity, ROTEM findings (normal vs. abnormal), and initial fibrinogen concentration (normal vs. hypofibrinogenemia). ROC curve analysis was performed to determine the diagnostic performance of FIBTEM A10/MCF for its association with hypofibrinogenemia. Results: A total of 1488 patients were included in this study; the mean age was 36.4 ± 14.2 years and 92% were male. In total, 376 (25.3%) patients had ROTEM abnormalities. Severe injuries (ISS ≥ 16) were associated with a higher shock index, positive troponin T levels, standard coagulation abnormalities, hypofibrinogenemia, and abnormal ROTEM parameters (p < 0.05). These patients also had higher rates of massive transfusions and in-hospital mortality (p = 0.001). Coagulation alterations were significantly associated with higher injury severity score (ISS), shock index, head abbreviated injury score (AIS), hypofibrinogenemia, transfusion need, and mortality (p < 0.05). Hypofibrinogenemic patients were younger, sustained severe injuries, had higher shock indices and coagulation marker levels, required more intensive treatments, had longer hospital stays, and had higher mortality (p < 0.05). A significant positive correlation was found between plasma fibrinogen concentration and FIBTEM-MCF (r = 0.294; p = 0.001). Conclusions: Approximately one-fourth of the patients had early traumatic coagulopathy, as assessed by ROTEM. The FIBTEM A10/MCF may serves as a surrogate marker for plasma fibrinogen concentration. While prior studies have established the link between ROTEM and injury severity, our findings reinforce its relevance across varying trauma severity levels. However, prospective studies are warranted to validate its role within diverse trauma systems and evolving resuscitation protocols.
KW - ROTEM
KW - coagulation abnormalities
KW - outcomes
KW - polytrauma
KW - severity of injury
UR - https://www.scopus.com/pages/publications/105004852315
U2 - 10.3390/diagnostics15091148
DO - 10.3390/diagnostics15091148
M3 - Article
AN - SCOPUS:105004852315
SN - 2075-4418
VL - 15
JO - Diagnostics
JF - Diagnostics
IS - 9
M1 - 1148
ER -