Abstract
Background: The zinc finger-containing transcription factor Gli2, is a key mediator of Hedgehog (Hh) signaling and participates in embryonic patterning of various organs including the central nervous system (CNS) and limbs. Abnormal expression of Gli2 can impede the transcription of Hh target genes through disruption of proper balance between Gli2 and Gli3 functions. Therefore, delineation of enhancers that are required for complementary roles of Glis would allow the interrogation of those pathogenic variants that cause gene dysregulation, and a corresponding abnormal phenotype. Previously, we reported tissue-specific enhancers for Gli family including Gli2 through direct tetrapod-teleost comparisons. Results: Here, we employed the sequence alignments of slowly evolving spotted gar and elephant shark and have identified six novel conserved noncoding elements in human GLI2 containing locus. Zebrafish-based transgenic assays revealed that combined action of these autonomous CNEs reflects many aspects of Gli2 specific endogenous transcriptional activity, including CNS and pectoral fins. Conclusion: Taken together with our previous findings, this study suggests that Hh-signaling controlled deployment of Gli2 activity in embryonic patterning arose in the common ancestor of gnathostomes. These GLI2 specific cis-regulatory modules will help to identify DNA variants that probably reside outside of coding intervals and are associated with congenital anomalies.
Original language | English |
---|---|
Pages (from-to) | 669-683 |
Number of pages | 15 |
Journal | Developmental Dynamics |
Volume | 250 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2021 |
Externally published | Yes |
Keywords
- CNEs
- Gli family
- Gli2
- Hh signaling
- elephant shark
- enhancers
- gar
- gnathostomes
- transgenesis
- zebrafish