COVID-19's influence on Karachi stock exchange: A comparative machine learning algorithms study for forecasting: A comparative machine learning algorithms study for forecasting

Tahir Munir, Rabia Emhamed Al Mamlook, Abdu R. Rahman, Afaf Alrashidi, Aqsa Muhammad Yaseen

Research output: Contribution to journalArticle

Abstract

The COVID-19 pandemic has great effects for economies internationally. This study studies the interconnection between COVID-19 metrics and Pakistan's premier stock exchange, the Karachi Stock Exchange (KSE) with the object of identifying the most effective machine learning (ML) model for predicting KSE developments in the pandemic. Our investigation periods the peak COVID-19 period from March 1, 2020, to November 26, 2021, applying data from both the KSE 100 index and COVID-19 associated variables. Five various ML methods were applied involving Linear Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF), Regression Tree (Rtree), and Support Vector Machine (SVM) and measured their performance employing critical accuracy metrics such as Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2). The outcomes discover that the RF model outperformed its equivalents realizing an R2 of 0.91 with k = 5. These results conflict with a previous study that supported a negative impact of COVID-19 on improved stock markets. The visions from this study can assist investors in managing strategic investment decisions and assist policymakers in making measures to reduce the pandemic's effects on the stock market.

Original languageUndefined/Unknown
Article numbere33190
JournalDepartment of Anaesthesia
Volume10
Issue number13
DOIs
Publication statusPublished - 15 Jul 2024

Keywords

  • COVID-19
  • Karachi stock exchange
  • KSE-100 index
  • Machine learning
  • Performance metrics

Cite this