TY - GEN
T1 - Deep Learning-Based Intrusion Detection System for Internet of Vehicles
AU - Ahmed, Imran
AU - Jeon, Gwanggil
AU - Ahmad, Awais
N1 - Publisher Copyright:
© 2012 IEEE.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - The growth of the Internet of Things (IoT) has resulted in several revolutionary applications, such as smart cities, cyber-physical systems, and the Internet of vehicles (IoV). Within the IoV infrastructure, vehicles are comprised of various electronic intelligent sensors or devices used to obtain data and communicate the necessary information with their surroundings. One of the major concerns about the implementation of these sensors or devices is data vulnerability; thus, it is necessary to present a solution that provides security, trust, and privacy to communicating entities and to secure vehicle data from malicious entities. In modern vehicles, the controller area network (CAN) is a fundamental scheme for controlling the interaction among different in-vehicle network sensors. However, not enough security features are present that support data encryption, authorization, and authentication mechanisms to secure the network from cyber or malicious intrusions such as denial of service and fuzzy attacks. An intrusion detection system is presented in this work based on the deep learning architecture to protect the CAN bus in vehicles. The VGG architecture is used and trained for different network intrusion patterns in order to detect malicious attacks. The experiments are performed using the CAN-intrusion-dataset. The experimental findings demonstrate that the presented deep learning system significantly reduces the false positive rate (FPR) compared to the conventional machine learning techniques. The overall accuracy of the system is 96% with FPR of 0.6%.
AB - The growth of the Internet of Things (IoT) has resulted in several revolutionary applications, such as smart cities, cyber-physical systems, and the Internet of vehicles (IoV). Within the IoV infrastructure, vehicles are comprised of various electronic intelligent sensors or devices used to obtain data and communicate the necessary information with their surroundings. One of the major concerns about the implementation of these sensors or devices is data vulnerability; thus, it is necessary to present a solution that provides security, trust, and privacy to communicating entities and to secure vehicle data from malicious entities. In modern vehicles, the controller area network (CAN) is a fundamental scheme for controlling the interaction among different in-vehicle network sensors. However, not enough security features are present that support data encryption, authorization, and authentication mechanisms to secure the network from cyber or malicious intrusions such as denial of service and fuzzy attacks. An intrusion detection system is presented in this work based on the deep learning architecture to protect the CAN bus in vehicles. The VGG architecture is used and trained for different network intrusion patterns in order to detect malicious attacks. The experiments are performed using the CAN-intrusion-dataset. The experimental findings demonstrate that the presented deep learning system significantly reduces the false positive rate (FPR) compared to the conventional machine learning techniques. The overall accuracy of the system is 96% with FPR of 0.6%.
UR - http://www.scopus.com/inward/record.url?scp=85122324059&partnerID=8YFLogxK
U2 - 10.1109/MCE.2021.3139170
DO - 10.1109/MCE.2021.3139170
M3 - Article
AN - SCOPUS:85122324059
SN - 2162-2248
VL - 12
SP - 117
EP - 123
JO - IEEE Consumer Electronics Magazine
JF - IEEE Consumer Electronics Magazine
ER -