TY - JOUR
T1 - Design and development of a smart variable rate sprayer using deep learning
AU - Hussain, Nazar
AU - Farooque, Aitazaz A.
AU - Schumann, Arnold W.
AU - McKenzie-Gopsill, Andrew
AU - Esau, Travis
AU - Abbas, Farhat
AU - Acharya, Bishnu
AU - Zaman, Qamar
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12/2
Y1 - 2020/12/2
N2 - The uniform application (UA) of agrochemicals results in the over-application of harmful chemicals, increases crop input costs, and deteriorates the environment when compared with variable rate application (VA). A smart variable rate sprayer (SVRS) was designed, developed, and tested using deep learning (DL) for VA application of agrochemicals. Real-time testing of the SVRS took place for detecting and spraying and/or skipping lambsquarters weed and early blight infected and healthy potato plants. About 24,000 images were collected from potato fields in Prince Edward Island and New Brunswick under varying sunny, cloudy, and partly cloudy conditions and processed/trained using YOLOv3 and tiny-YOLOv3 models. Due to faster performance, the tiny-YOLOv3 was chosen to deploy in SVRS. A laboratory experiment was designed under factorial arrangements, where the two spraying techniques (UA and VA) and the three weather conditions (cloudy, partly cloudy, and sunny) were the two independent variables with spray volume consumption as a response variable. The experimental treatments had six repetitions in a 2 × 3 factorial design. Results of the two-way ANOVA showed a significant effect of spraying application techniques on volume consumption of spraying liquid (p-value < 0.05). There was no significant effect of weather conditions and interactions between the two independent variables on volume consumption during weeds and simulated diseased plant detection experiments (p-value > 0.05). The SVRS was able to save 42 and 43% spraying liquid during weeds and simulated diseased plant detection experiments, respectively. Water sensitive papers’ analysis showed the applicability of SVRS for VA with >40% savings of spraying liquid by SVRS when compared with UA. Field applications of this technique would reduce the crop input costs and the environmental risks in conditions (weed and disease) like experimental testing.
AB - The uniform application (UA) of agrochemicals results in the over-application of harmful chemicals, increases crop input costs, and deteriorates the environment when compared with variable rate application (VA). A smart variable rate sprayer (SVRS) was designed, developed, and tested using deep learning (DL) for VA application of agrochemicals. Real-time testing of the SVRS took place for detecting and spraying and/or skipping lambsquarters weed and early blight infected and healthy potato plants. About 24,000 images were collected from potato fields in Prince Edward Island and New Brunswick under varying sunny, cloudy, and partly cloudy conditions and processed/trained using YOLOv3 and tiny-YOLOv3 models. Due to faster performance, the tiny-YOLOv3 was chosen to deploy in SVRS. A laboratory experiment was designed under factorial arrangements, where the two spraying techniques (UA and VA) and the three weather conditions (cloudy, partly cloudy, and sunny) were the two independent variables with spray volume consumption as a response variable. The experimental treatments had six repetitions in a 2 × 3 factorial design. Results of the two-way ANOVA showed a significant effect of spraying application techniques on volume consumption of spraying liquid (p-value < 0.05). There was no significant effect of weather conditions and interactions between the two independent variables on volume consumption during weeds and simulated diseased plant detection experiments (p-value > 0.05). The SVRS was able to save 42 and 43% spraying liquid during weeds and simulated diseased plant detection experiments, respectively. Water sensitive papers’ analysis showed the applicability of SVRS for VA with >40% savings of spraying liquid by SVRS when compared with UA. Field applications of this technique would reduce the crop input costs and the environmental risks in conditions (weed and disease) like experimental testing.
KW - Agrochemicals
KW - Deep convolutional neural networks
KW - Environmental risks
KW - Percent area coverage
KW - Smart variable rate sprayer
KW - Variable rate application
UR - http://www.scopus.com/inward/record.url?scp=85098243884&partnerID=8YFLogxK
U2 - 10.3390/rs12244091
DO - 10.3390/rs12244091
M3 - Article
AN - SCOPUS:85098243884
SN - 2072-4292
VL - 12
SP - 1
EP - 17
JO - Remote Sensing
JF - Remote Sensing
IS - 24
M1 - 4091
ER -