@inproceedings{77bfe0b402ed4b6198d074d5a0479ee7,
title = "Fuzzy control of baseline activity within the basal ganglia of rat brain",
abstract = "Deep brain stimulation (DBS) is an increasingly popular treatment modality for Parkinson's disease (PD) based on chronic electrical stimulation of the basal ganglia. The basal ganglia are responsible for regulating motor control of the human body, a function exemplified by disease states such as PD. We describe a novel technique based on a chronically implantable neural prosthetic device that could be used as a potential treatment in many basal ganglia disorders, including PD. The prosthetic device implements a fuzzy control of the baseline excitation of the motor cortex and derives a feedback loop from the thalamocortical pathway, thus forming a closed loop control. It improves over DBS by being self-adjustable, thereby eradicating the need of repeated adjustments of various parameters of the excitatory signal(s). The neural prosthetic device can be implanted in a rat brain and the fuzzy control rule set be derived from in vitro organotypic slice culture models of the basal ganglia.",
keywords = "Basal ganglia, Brain stimulation, Electrical stimulation, Fuzzy control, Humans, Motor drives, Neural prosthesis, Parkinson's disease, Prosthetics, Satellite broadcasting",
author = "Ozair, {M. Z.} and S. Enam-Ur-Rehman and Enam, {S. A.}",
note = "Publisher Copyright: {\textcopyright} 2003 IEEE.; 7th IEEE International Multi Topic Conference, INMIC 2003 ; Conference date: 08-12-2003 Through 09-12-2003",
year = "2003",
doi = "10.1109/INMIC.2003.1416749",
language = "English",
series = "Proceedings - INMIC 2003: IEEE 7th International Multi Topic Conference",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "351--353",
booktitle = "Proceedings - INMIC 2003",
address = "United States",
}