TY - JOUR
T1 - Genetic diversity among Plasmodium falciparum field isolates in Pakistan measured with PCR genotyping of the merozoite surface protein 1 and 2
AU - Ghanchi, Najia K.
AU - Mårtensson, Andreas
AU - Ursing, Johan
AU - Jafri, Sana
AU - Bereczky, Sndor
AU - Hussain, Rabia
AU - Beg, Mohammad A.
N1 - Funding Information:
We thank Malaria Research and Reference Reagent Resource Centre (MR4), ATCC® Manassas, VA, USA for providing us positive controls (3D7, KI, Dd2 genomic DNA). This study was financially supported by the University Research Council grant (URC # 051012 P&M) by Aga Khan University (MAB), the Swedish South Asian Studies Network (SASNET) (AM), the Swedish institute (AM, JU and NKG) and Higher Education Commission, Government of Pakistan (NKG) (Ref # 042-130358-Ls2305).
PY - 2010
Y1 - 2010
N2 - Background. The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Pakistan. This study aimed to establish molecular characterization of P. falciparum field isolates in Pakistan measured with two highly polymorphic genetic markers, i.e. the merozoite surface protein 1 (msp-1)and 2 (msp-2). Methods. Between October 2005 and October 2007, 244 blood samples from patients with symptomatic blood-slide confirmed P. falciparum mono-infections attending the Aga Khan University Hospital, Karachi, or its collection units located in Sindh and Baluchistan provinces, Pakistan were collected. The genetic diversity of P. falciparum was analysed by length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) targeting block 2 of msp-1 and block 3 of msp-2, including their respective allelic families KI, MAD 20, RO33, and FC27, 3D7/IC. Results. A total of 238/244 (98%) patients had a positive PCR outcome in at least one genetic marker; the remaining six were excluded from analysis. A majority of patients had monoclonal infections. Only 56/231 (24%) and 51/236 (22%) carried multiple P. falciparum genotypes in msp-1 and msp-2, respectively. The estimated total number of genotypes was 25 msp-1 (12 KI; 8 MAD20; 5 RO33) and 33 msp-2 (14 FC27; 19 3D7/IC). Conclusions. This is the first report on molecular characterization of P. falciparum field isolates in Pakistan with regards to multiplicity of infection. The genetic diversity and allelic distribution found in this study is similar to previous reports from India and Southeast Asian countries with low malaria endemicity.
AB - Background. The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Pakistan. This study aimed to establish molecular characterization of P. falciparum field isolates in Pakistan measured with two highly polymorphic genetic markers, i.e. the merozoite surface protein 1 (msp-1)and 2 (msp-2). Methods. Between October 2005 and October 2007, 244 blood samples from patients with symptomatic blood-slide confirmed P. falciparum mono-infections attending the Aga Khan University Hospital, Karachi, or its collection units located in Sindh and Baluchistan provinces, Pakistan were collected. The genetic diversity of P. falciparum was analysed by length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) targeting block 2 of msp-1 and block 3 of msp-2, including their respective allelic families KI, MAD 20, RO33, and FC27, 3D7/IC. Results. A total of 238/244 (98%) patients had a positive PCR outcome in at least one genetic marker; the remaining six were excluded from analysis. A majority of patients had monoclonal infections. Only 56/231 (24%) and 51/236 (22%) carried multiple P. falciparum genotypes in msp-1 and msp-2, respectively. The estimated total number of genotypes was 25 msp-1 (12 KI; 8 MAD20; 5 RO33) and 33 msp-2 (14 FC27; 19 3D7/IC). Conclusions. This is the first report on molecular characterization of P. falciparum field isolates in Pakistan with regards to multiplicity of infection. The genetic diversity and allelic distribution found in this study is similar to previous reports from India and Southeast Asian countries with low malaria endemicity.
UR - http://www.scopus.com/inward/record.url?scp=74849102310&partnerID=8YFLogxK
U2 - 10.1186/1475-2875-9-1
DO - 10.1186/1475-2875-9-1
M3 - Article
C2 - 20043863
AN - SCOPUS:74849102310
SN - 1475-2875
VL - 9
JO - Malaria Journal
JF - Malaria Journal
IS - 1
M1 - 1
ER -