TY - JOUR
T1 - HMIC
T2 - Hierarchical medical image classification, a deep learning approach
AU - Kowsari, Kamran
AU - Sali, Rasoul
AU - Ehsan, Lubaina
AU - Adorno, William
AU - Ali, Asad
AU - Moore, Sean
AU - Amadi, Beatrice
AU - Kelly, Paul
AU - Syed, Sana
AU - Brown, Donald
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Image classification is central to the big data revolution in medicine. Improved information processing methods for diagnosis and classification of digital medical images have shown to be successful via deep learning approaches. As this field is explored, there are limitations to the performance of traditional supervised classifiers. This paper outlines an approach that is different from the current medical image classification tasks that view the issue as multi-class classification. We performed a hierarchical classification using our Hierarchical Medical Image classification (HMIC) approach. HMIC uses stacks of deep learning models to give particular comprehension at each level of the clinical picture hierarchy. For testing our performance, we use biopsy of the small bowel images that contain three categories in the parent level (Celiac Disease, Environmental Enteropathy, and histologically normal controls). For the child level, Celiac Disease Severity is classified into 4 classes (I, IIIa, IIIb, and IIIC).
AB - Image classification is central to the big data revolution in medicine. Improved information processing methods for diagnosis and classification of digital medical images have shown to be successful via deep learning approaches. As this field is explored, there are limitations to the performance of traditional supervised classifiers. This paper outlines an approach that is different from the current medical image classification tasks that view the issue as multi-class classification. We performed a hierarchical classification using our Hierarchical Medical Image classification (HMIC) approach. HMIC uses stacks of deep learning models to give particular comprehension at each level of the clinical picture hierarchy. For testing our performance, we use biopsy of the small bowel images that contain three categories in the parent level (Celiac Disease, Environmental Enteropathy, and histologically normal controls). For the child level, Celiac Disease Severity is classified into 4 classes (I, IIIa, IIIb, and IIIC).
KW - Deep learning
KW - Hierarchical classification
KW - Hierarchical medical image classification
KW - Medical imaging
UR - http://www.scopus.com/inward/record.url?scp=85087495336&partnerID=8YFLogxK
U2 - 10.3390/INFO11060318
DO - 10.3390/INFO11060318
M3 - Article
AN - SCOPUS:85087495336
SN - 2078-2489
VL - 11
JO - Information (Switzerland)
JF - Information (Switzerland)
IS - 6
M1 - 318
ER -