Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios

Ali Khan Shahbaz, Karolina Lewińska, Javed Iqbal, Qasim Ali, Mahmood-ur-Rahman, Muhammad Iqbal, Farhat Abbas, Hafiz Muhammad Tauqeer, Pia Muhammad Adnan Ramzani

Research output: Contribution to journalArticlepeer-review

71 Citations (Scopus)

Abstract

Nickel (Ni) contaminated soils pose a potential ecological risk to the environment, soil health, and quality of food produced on them. We hypothesized that application of miscanthus biochar (BC) and cationic zeolite (ZE) at various proportions into a Ni contaminated soil can efficiently immobilize Ni and reduce its bioavailability to sunflower (Helianthus annuus L.) and maize (Zea mays L.). An electroplating effluent contaminated soil was amended with BC and ZE, as sole treatments (2% w/w) and their combinations of various ratios (BC, ZE, BC25%ZE75%, BC50%ZE50% and BC75%ZE25%) for immobilization of Ni in the soil. Furthermore, the associated effects of these treatments on residual and DTPA-extractable Ni from the soil; concentrations of Ni in shoots, roots, and grain; growth, physiology, biochemistry and the antioxidant defence mechanisms of sunflower and maize were investigated. Results revealed that BC50%ZE50% treatment efficiently reduced DTPA-extractable Ni in the soil, Ni concentrations in shoots, roots, and grain, while improved selective parameters of both plants. Interestingly, the BC75%ZE25% treatment significantly improved the biomass, grain yield, physiology, biochemistry and antioxidant defense machinery, while decreased Ni oxidative stress in both sunflower and maize, compared to rest of the treatments. The results demonstrate that the BC50%ZE50% treatment can efficiently reduce Ni concentrations in the roots, shoots and grain of both sunflower and maize whereas, an improvement in biomass, grain yield, physiological, biochemical, and antioxidant defense machinery of both crops can only be achieved with the application of BC75%ZE25% treatment in a Ni contaminated soil.

Original languageEnglish
Pages (from-to)256-270
Number of pages15
JournalJournal of Environmental Management
Volume218
DOIs
Publication statusPublished - 15 Jul 2018
Externally publishedYes

Keywords

  • Antioxidant defense machinery
  • Biochar
  • Immobilization
  • Stress
  • Zeolite

Fingerprint

Dive into the research topics of 'Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios'. Together they form a unique fingerprint.

Cite this