In vitro inhibition of protease-activated receptors 1, 2 and 4 demonstrates that these receptors are not involved in an Acanthamoeba castellanii keratitis isolate-mediated disruption of the human brain microvascular endothelial cells

Junaid Iqbal, Komal Naeem, Ruqaiyyah Siddiqui, Naveed Ahmed Khan

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Granulomatous amoebic encephalitis is a rare but serious human disease leading almost always to death. The pathophysiology of amoebic encephalitis is better understood, while events leading to the constitution of brain infection are largely unknown. Traversal of the blood-brain barrier is a key step in amoebae invasion of the central nervous system and facilitated by amoebic extracellular proteases. By using specific inhibitors of protease-activated receptors 1, 2 and 4, here we studied the role of these host receptors in Acanthamoeba castellanii-mediated damage to human brain microvasculature endothelial cells (HBMEC), which constitute the blood-brain barrier. The primary HBMEC were incubated with A. castellanii-conditioned medium in the presence or absence of FR-171113 (selective inhibitor of protease-activated receptor 1), FSLLRY-NH2 (inhibitor of protease-activated receptor 2), and tcY-NH2 (inhibitor of protease-activated receptor 4). The HBMEC monolayer disruptions were assessed by microscopy using Eosin staining, while host cell cytotoxicity was determined by measuring the release of cytoplasmic lactate dehydrogenase. Zymographic assays were performed to determine the effects of inhibitors of protease-activated receptors on the extracellular proteolytic activities of A. castellanii. A. castellanii-conditioned medium produced severe HBMEC monolayer disruptions within 60min. The selective inhibitors of protease-activated receptors tested did not affect HBMEC monolayer disruptions. On the contrary, pre-treatment of A. castellanii-conditioned medium with phenylmethylsulfonyl fluoride, a serine protease inhibitor, or heating for 10min at 95°C abolished HBMEC monolayer disruptions. Additionally, inhibitors of protease-activated receptors tested, failed to block A. castellanii-mediated HBMEC cytotoxicity and did not affect extracellular proteolytic activities of A. castellanii. Protease-activated receptors 1, 2 and 4 do not appear to play a role in A. castellanii-mediated dysfunction of HBMEC, which constitute the blood-brain barrier. The role of additional protease-activated receptors in amoebic invasion of the central nervous system is discussed further.

Original languageEnglish
Pages (from-to)S78-S83
JournalExperimental Parasitology
Volume145
Issue numberS
DOIs
Publication statusPublished - 1 Nov 2014

Keywords

  • Acanthamoeba
  • Brain endothelial cells
  • FR-171113
  • FSLLRY-NH
  • Protease-activated receptors
  • TcY-NH
  • Zymographic assays

Fingerprint

Dive into the research topics of 'In vitro inhibition of protease-activated receptors 1, 2 and 4 demonstrates that these receptors are not involved in an Acanthamoeba castellanii keratitis isolate-mediated disruption of the human brain microvascular endothelial cells'. Together they form a unique fingerprint.

Cite this