Abstract
Abstract: The expansion in knowledge of the microbial community structure can play a vital role in the electrochemical features and operation of microbial fuel cells (MFCs). In this study, bacterial community composition in a dual chamber MFC fed with brewery waste was investigated for simultaneous electricity generation and azo dye degradation. A stable voltage was generated with a maximum power density of 305 and 269 mW m−2 for brewery waste alone (2000 mg L−1) and after the azo dye (200 mg L−1) addition, respectively. Azo dye degradation was confirmed by Fourier transform infrared spectroscopy (FT-IR) as peak corresponding to –N=N– (azo) bond disappeared in the dye metabolites. Microbial communities attached to the anode were analyzed by high-throughput 454 pyrosequencing of the 16S rRNA gene. Microbial community composition analysis revealed that Proteobacteria (67.3 %), Betaproteobacteria (30.8 %), and Desulfovibrio (18.3 %) were the most dominant communities at phylum, class, and genus level, respectively. Among the classified genera, Desulfovibrio most likely plays a major role in electron transfer to the anode since its outer membrane contains c-type cytochromes. At the genus level, 62.3 % of all sequences belonged to the unclassified category indicating a high level of diversity of microbial groups in MFCs fed with brewery waste and azo dye. Highlights: • Azo dye degradation and stable bioelectricity generation was achieved in the MFC. • Anodic biofilm was analyzed by high-throughput pyrosequencing of the 16S rRNA gene. • Desulfovibrio (18.3 %) was the dominant genus in the classified genera. • Of the genus, 62.3 % were unclassified, thereby indicating highly diverse microbes. [Figure not available: see fulltext.]
| Original language | English (UK) |
|---|---|
| Pages (from-to) | 13477-13485 |
| Number of pages | 9 |
| Journal | Environmental Science and Pollution Research |
| Volume | 22 |
| Issue number | 17 |
| DOIs | |
| Publication status | Published - 28 Sept 2015 |
| Externally published | Yes |
Keywords
- Bioelectricity
- Brewery wastewater
- Dye degradation
- Microbial community analysis
- Microbial fuel cell
- Pyrosequencing