MRAS in coronary artery disease—Unchartered territory

Pashmina Wiqar Shah, Tobias Reinberger, Satwat Hashmi, Zouhair Aherrahrou, Jeanette Erdmann

Research output: Contribution to journalReview articlepeer-review

Abstract

Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.

Original languageEnglish
JournalIUBMB Life
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • GWAS
  • MRAS
  • SNVs
  • atherosclerosis
  • coronary artery disease

Fingerprint

Dive into the research topics of 'MRAS in coronary artery disease—Unchartered territory'. Together they form a unique fingerprint.

Cite this