TY - JOUR
T1 - Nicotine preloading for smoking cessation
T2 - The preloading RCT
AU - Aveyard, Paul
AU - Lindson, Nicola
AU - Tearne, Sarah
AU - Adams, Rachel
AU - Ahmed, Khaled
AU - Alekna, Rhona
AU - Banting, Miriam
AU - Healy, Mike
AU - Khan, Shahnaz
AU - Rai, Gurmail
AU - Wood, Carmen
AU - Anderson, Emma C.
AU - Ataya-Williams, Alia
AU - Attwood, Angela
AU - Easey, Kayleigh
AU - Fluharty, Megan
AU - Freuler, Therese
AU - Hurse, Megan
AU - Khouja, Jasmine
AU - Lacey, Lindsey
AU - Munafò, Marcus
AU - Lycett, Deborah
AU - McEwen, Andy
AU - Coleman, Tim
AU - Dickinson, Anne
AU - Lewis, Sarah
AU - Orton, Sophie
AU - Perdue, Johanna
AU - Randall, Clare
AU - Anderson, Rebecca
AU - Bisal, Natalie
AU - Hajek, Peter
AU - Homsey, Celine
AU - McRobbie, Hayden J.
AU - Myers-Smith, Katherine
AU - Phillips, Anna
AU - Przulj, Dunja
AU - Li, Jinshuo
AU - Coyle, Doug
AU - Coyle, Katherine
AU - Pokhrel, Subhash
N1 - Publisher Copyright:
© Queen’s Printer and Controller of HMSO 2018.
PY - 2018/8
Y1 - 2018/8
N2 - Background: Nicotine preloading means using nicotine replacement therapy prior to a quit date while smoking normally. The aim is to reduce the drive to smoke, thereby reducing cravings for smoking after quit day, which are the main cause of early relapse. A prior systematic review showed inconclusive and heterogeneous evidence that preloading was effective and little evidence of the mechanism of action, with no cost-effectiveness data. Objectives: To assess (1) the effectiveness, safety and tolerability of nicotine preloading in a routine NHS setting relative to usual care, (2) the mechanisms of the action of preloading and (3) the cost-effectiveness of preloading. Design: Open-label randomised controlled trial with examination of mediation and a cost-effectiveness analysis. Setting: NHS smoking cessation clinics. Participants: People seeking help to stop smoking. Interventions: Nicotine preloading comprised wearing a 21 mg/24 hour nicotine patch for 4 weeks prior to quit date. In addition, minimal behavioural support was provided to explain the intervention rationale and to support adherence. In the comparator group, participants received equivalent behavioural support. Randomisation was stratified by centre and concealed from investigators. Main outcome measures: The primary outcome was 6-month prolonged abstinence assessed using the Russell Standard. The secondary outcomes were 4-week and 12-month abstinence. Adverse events (AEs) were assessed from baseline to 1 week after quit day. In a planned analysis, we adjusted for the use of varenicline (Champix®; Pfizer Inc., New York, NY, USA) as post-cessation medication. Cost-effectiveness analysis took a health-service perspective. The within-trial analysis assessed health-service costs during the 13 months of trial enrolment relative to the previous 6 months comparing trial arms. The base case was based on multiple imputation for missing cost data. We modelled long-term health outcomes of smoking-related diseases using the European-study on Quantifying Utility of Investment in Protection from Tobacco (EQUIPT) model. Results: In total, 1792 people were eligible and were enrolled in the study, with 893 randomised to the control group and 899 randomised to the intervention group. In the intervention group, 49 (5.5%) people discontinued preloading prematurely and most others used it daily. The primary outcome, biochemically validated 6-month abstinence, was achieved by 157 (17.5%) people in the intervention group and 129 (14.4%) people in the control group, a difference of 3.02 percentage points [95% confidence interval (CI) –0.37 to 6.41 percentage points; odds ratio (OR) 1.25, 95% CI 0.97 to 1.62; p = 0.081]. Adjusted for use of post-quit day varenicline, the OR was 1.34 (95% CI 1.03 to 1.73; p = 0.028). Secondary abstinence outcomes were similar. The OR for the occurrence of serious AEs was 1.12 (95% CI 0.42 to 3.03). Moderate-severity nausea occurred in an additional 4% of the preloading group compared with the control group. There was evidence that reduced urges to smoke and reduced smoke inhalation mediated the effect of preloading on abstinence. The incremental cost-effectiveness ratio at the 6-month follow-up for preloading relative to control was £710 (95% CI –£13,674 to £23,205), but preloading was dominant at 12 months and in the long term, with an 80% probability that it is cost saving. Limitations: The open-label design could partially account for the mediation results. Outcome assessment could not be blinded but was biochemically verified. Conclusions: Use of nicotine-patch preloading for 4 weeks prior to attempting to stop smoking can increase the proportion of people who stop successfully, but its benefit is undermined because it reduces the use of varenicline after preloading. If this latter effect could be overcome, then nicotine preloading appears to improve health and reduce health-service costs in the long term. Future work should determine how to ensure that people using nicotine preloading opt to use varenicline as cessation medication.
AB - Background: Nicotine preloading means using nicotine replacement therapy prior to a quit date while smoking normally. The aim is to reduce the drive to smoke, thereby reducing cravings for smoking after quit day, which are the main cause of early relapse. A prior systematic review showed inconclusive and heterogeneous evidence that preloading was effective and little evidence of the mechanism of action, with no cost-effectiveness data. Objectives: To assess (1) the effectiveness, safety and tolerability of nicotine preloading in a routine NHS setting relative to usual care, (2) the mechanisms of the action of preloading and (3) the cost-effectiveness of preloading. Design: Open-label randomised controlled trial with examination of mediation and a cost-effectiveness analysis. Setting: NHS smoking cessation clinics. Participants: People seeking help to stop smoking. Interventions: Nicotine preloading comprised wearing a 21 mg/24 hour nicotine patch for 4 weeks prior to quit date. In addition, minimal behavioural support was provided to explain the intervention rationale and to support adherence. In the comparator group, participants received equivalent behavioural support. Randomisation was stratified by centre and concealed from investigators. Main outcome measures: The primary outcome was 6-month prolonged abstinence assessed using the Russell Standard. The secondary outcomes were 4-week and 12-month abstinence. Adverse events (AEs) were assessed from baseline to 1 week after quit day. In a planned analysis, we adjusted for the use of varenicline (Champix®; Pfizer Inc., New York, NY, USA) as post-cessation medication. Cost-effectiveness analysis took a health-service perspective. The within-trial analysis assessed health-service costs during the 13 months of trial enrolment relative to the previous 6 months comparing trial arms. The base case was based on multiple imputation for missing cost data. We modelled long-term health outcomes of smoking-related diseases using the European-study on Quantifying Utility of Investment in Protection from Tobacco (EQUIPT) model. Results: In total, 1792 people were eligible and were enrolled in the study, with 893 randomised to the control group and 899 randomised to the intervention group. In the intervention group, 49 (5.5%) people discontinued preloading prematurely and most others used it daily. The primary outcome, biochemically validated 6-month abstinence, was achieved by 157 (17.5%) people in the intervention group and 129 (14.4%) people in the control group, a difference of 3.02 percentage points [95% confidence interval (CI) –0.37 to 6.41 percentage points; odds ratio (OR) 1.25, 95% CI 0.97 to 1.62; p = 0.081]. Adjusted for use of post-quit day varenicline, the OR was 1.34 (95% CI 1.03 to 1.73; p = 0.028). Secondary abstinence outcomes were similar. The OR for the occurrence of serious AEs was 1.12 (95% CI 0.42 to 3.03). Moderate-severity nausea occurred in an additional 4% of the preloading group compared with the control group. There was evidence that reduced urges to smoke and reduced smoke inhalation mediated the effect of preloading on abstinence. The incremental cost-effectiveness ratio at the 6-month follow-up for preloading relative to control was £710 (95% CI –£13,674 to £23,205), but preloading was dominant at 12 months and in the long term, with an 80% probability that it is cost saving. Limitations: The open-label design could partially account for the mediation results. Outcome assessment could not be blinded but was biochemically verified. Conclusions: Use of nicotine-patch preloading for 4 weeks prior to attempting to stop smoking can increase the proportion of people who stop successfully, but its benefit is undermined because it reduces the use of varenicline after preloading. If this latter effect could be overcome, then nicotine preloading appears to improve health and reduce health-service costs in the long term. Future work should determine how to ensure that people using nicotine preloading opt to use varenicline as cessation medication.
UR - https://www.scopus.com/pages/publications/85056859262
U2 - 10.3310/hta22410
DO - 10.3310/hta22410
M3 - Article
C2 - 30079863
AN - SCOPUS:85056859262
SN - 1366-5278
VL - 22
SP - vii-84
JO - Health Technology Assessment
JF - Health Technology Assessment
IS - 41
ER -