TY - CHAP
T1 - Plant Disease Diagnosis with Artificial Intelligence (AI)
AU - Naveed, Muhammad
AU - Majeed, Muhammad
AU - Jabeen, Khizra
AU - Hanif, Nimra
AU - Naveed, Rida
AU - Saleem, Sania
AU - Khan, Nida
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
PY - 2024
Y1 - 2024
N2 - Plant diseases, which are unseen but deadly, endanger our crops and the food security of nations. However, optimism stems from the convergence of powerful artificial intelligence (AI) approaches, each of which plays a distinct role in the protection of our domains. A change in the way farming is practiced at the moment could be embodied by an unwavering application of artificial intelligence and its subsets in agriculture. A farmer may accomplish more with fewer resources thanks to AI-powered farming solutions, which also improve quality and ensure speedy GTM (go-to-market) strategies for crops. Direct use of AI (artificial intelligence) or machine intelligence in the agricultural industry could represent a paradigm shift in the way farming is now carried out. Deep learning, driven by neural networks, has transformed how we perceive and diagnose many diseases. Deep learning overcomes the constraints of existing approaches by autonomously extracting detailed visual information, providing greater precision and efficiency in recognizing plant diseases. Convolutional neural networks (CNNs), a subset of deep learning, have emerged as powerful tools, with elaborate network structures and local receptive fields that enable them to interpret complex visual input, making them indispensable in the field of image recognition. Machine learning approaches, such as support vector machine (SVM) and artificial neural network (ANN) classifiers, have also stepped up to the plate, automating the diagnosis of plant diseases with remarkable precision. Deep learning-capable robotics and machine intelligence have had a profoundly disruptive and enabling impact on industry, governments, and society. They are also having an impact on more general trends in international sustainability. Weather patterns, soil composition, and disease trends all tell their own tales, providing forecast insights and personalized preventative steps to safeguard the harvest. A symphony of IoT devices orchestrates vigilance across smart farms. By capturing the afflicted plant sections, farmers may quickly and correctly identify illnesses and find remedies using a mobile app through AI advancements. The most recent artificial intelligence (AI) algorithms for cloud-based image processing enable real-time diagnosis. Artificial intelligence and its thorough learning capabilities have developed into a crucial strategy for addressing a range of farming-related difficulties.
AB - Plant diseases, which are unseen but deadly, endanger our crops and the food security of nations. However, optimism stems from the convergence of powerful artificial intelligence (AI) approaches, each of which plays a distinct role in the protection of our domains. A change in the way farming is practiced at the moment could be embodied by an unwavering application of artificial intelligence and its subsets in agriculture. A farmer may accomplish more with fewer resources thanks to AI-powered farming solutions, which also improve quality and ensure speedy GTM (go-to-market) strategies for crops. Direct use of AI (artificial intelligence) or machine intelligence in the agricultural industry could represent a paradigm shift in the way farming is now carried out. Deep learning, driven by neural networks, has transformed how we perceive and diagnose many diseases. Deep learning overcomes the constraints of existing approaches by autonomously extracting detailed visual information, providing greater precision and efficiency in recognizing plant diseases. Convolutional neural networks (CNNs), a subset of deep learning, have emerged as powerful tools, with elaborate network structures and local receptive fields that enable them to interpret complex visual input, making them indispensable in the field of image recognition. Machine learning approaches, such as support vector machine (SVM) and artificial neural network (ANN) classifiers, have also stepped up to the plate, automating the diagnosis of plant diseases with remarkable precision. Deep learning-capable robotics and machine intelligence have had a profoundly disruptive and enabling impact on industry, governments, and society. They are also having an impact on more general trends in international sustainability. Weather patterns, soil composition, and disease trends all tell their own tales, providing forecast insights and personalized preventative steps to safeguard the harvest. A symphony of IoT devices orchestrates vigilance across smart farms. By capturing the afflicted plant sections, farmers may quickly and correctly identify illnesses and find remedies using a mobile app through AI advancements. The most recent artificial intelligence (AI) algorithms for cloud-based image processing enable real-time diagnosis. Artificial intelligence and its thorough learning capabilities have developed into a crucial strategy for addressing a range of farming-related difficulties.
KW - Artificial intelligence
KW - Plant diseases
KW - Remarkable precision
UR - http://www.scopus.com/inward/record.url?scp=85195147639&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-9621-6_15
DO - 10.1007/978-981-99-9621-6_15
M3 - Chapter
AN - SCOPUS:85195147639
T3 - Microorganisms for Sustainability
SP - 217
EP - 234
BT - Microorganisms for Sustainability
PB - Springer
ER -