TY - JOUR
T1 - Potentially heterogeneous cross-sectional associations of seafood consumption with diabetes and glycemia in urban South Asia
AU - Gribble, Matthew O.
AU - Head, Jennifer R.
AU - Prabhakaran, Dorairaj
AU - Kapoor, Deksha
AU - Garg, Vandana
AU - Mohan, Deepa
AU - Anjana, Ranjit Mohan
AU - Mohan, Viswanathan
AU - Vasudevan, Sudha
AU - Kadir, M. Masood
AU - Tandon, Nikhil
AU - Venkat Narayan, K. M.
AU - Patel, Shivani A.
AU - Jaacks, Lindsay M.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/1/2
Y1 - 2020/1/2
N2 - Aims: In this study, we aimed to estimate cross-sectional associations of fish or shellfish consumption with diabetes and glycemia in three South Asian mega-cities. Methods: We analyzed baseline data from 2010–2011 of a cohort (n = 16,287) representing the population ≥20 years old that was neither pregnant nor on bedrest from Karachi (unweighted n = 4017), Delhi (unweighted n = 5364), and Chennai (unweighted n = 6906). Diabetes was defined as self-reported physician-diagnosed diabetes, fasting plasma glucose ≥126 mg/dL (7.0 mmol/L), or glycated hemoglobin A1c (HbA1c) ≥6.5% (48 mmol/mol). We estimated adjusted and unadjusted odds ratios for diabetes using survey estimation logistic regression for each city, and differences in glucose and HbA1c using survey estimation linear regression for each city. Adjusted models controlled for age, gender, body mass index, waist–height ratio, sedentary lifestyle, educational attainment, tobacco use, an unhealthy diet index score, income, self-reported physician diagnosis of high blood pressure, and self-reported physician diagnosis of high cholesterol. Results: The prevalence of diabetes was 26.7% (95% confidence interval: 24.8, 28.6) in Chennai, 36.7% (32.9, 40.5) in Delhi, and 24.3% (22.0, 26.6) in Karachi. Fish and shellfish were consumed more frequently in Chennai than in the other two cities. In Chennai, the adjusted odds ratio for diabetes, comparing more than weekly vs. less than weekly fish consumption, was 0.81 (0.61, 1.08); in Delhi, it was 1.18 (0.87, 1.58), and, in Karachi, it was 1.30 (0.94, 1.80). In Chennai, the adjusted odds ratio of prevalent diabetes among persons consuming shellfish more than weekly versus less than weekly was 1.08 (95% CI: 0.90, 1.30); in Delhi, it was 1.35 (0.90, 2.01), and, in Karachi, it was 1.68 (0.98, 2.86). Conclusions: Both the direction and the magnitude of association between seafood consumption and glycemia may vary by city. Further investigation into specific locally consumed seafoods and their prospective associations with incident diabetes and related pathophysiology are warranted.
AB - Aims: In this study, we aimed to estimate cross-sectional associations of fish or shellfish consumption with diabetes and glycemia in three South Asian mega-cities. Methods: We analyzed baseline data from 2010–2011 of a cohort (n = 16,287) representing the population ≥20 years old that was neither pregnant nor on bedrest from Karachi (unweighted n = 4017), Delhi (unweighted n = 5364), and Chennai (unweighted n = 6906). Diabetes was defined as self-reported physician-diagnosed diabetes, fasting plasma glucose ≥126 mg/dL (7.0 mmol/L), or glycated hemoglobin A1c (HbA1c) ≥6.5% (48 mmol/mol). We estimated adjusted and unadjusted odds ratios for diabetes using survey estimation logistic regression for each city, and differences in glucose and HbA1c using survey estimation linear regression for each city. Adjusted models controlled for age, gender, body mass index, waist–height ratio, sedentary lifestyle, educational attainment, tobacco use, an unhealthy diet index score, income, self-reported physician diagnosis of high blood pressure, and self-reported physician diagnosis of high cholesterol. Results: The prevalence of diabetes was 26.7% (95% confidence interval: 24.8, 28.6) in Chennai, 36.7% (32.9, 40.5) in Delhi, and 24.3% (22.0, 26.6) in Karachi. Fish and shellfish were consumed more frequently in Chennai than in the other two cities. In Chennai, the adjusted odds ratio for diabetes, comparing more than weekly vs. less than weekly fish consumption, was 0.81 (0.61, 1.08); in Delhi, it was 1.18 (0.87, 1.58), and, in Karachi, it was 1.30 (0.94, 1.80). In Chennai, the adjusted odds ratio of prevalent diabetes among persons consuming shellfish more than weekly versus less than weekly was 1.08 (95% CI: 0.90, 1.30); in Delhi, it was 1.35 (0.90, 2.01), and, in Karachi, it was 1.68 (0.98, 2.86). Conclusions: Both the direction and the magnitude of association between seafood consumption and glycemia may vary by city. Further investigation into specific locally consumed seafoods and their prospective associations with incident diabetes and related pathophysiology are warranted.
KW - Blood glucose
KW - Diabetes mellitus
KW - Diet
KW - Diet surveys
KW - Glycated hemoglobin A
KW - India
KW - Pakistan
KW - Seafood
KW - Shellfish
UR - http://www.scopus.com/inward/record.url?scp=85077879507&partnerID=8YFLogxK
U2 - 10.3390/ijerph17020459
DO - 10.3390/ijerph17020459
M3 - Article
C2 - 31936772
AN - SCOPUS:85077879507
SN - 1661-7827
VL - 17
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 2
M1 - 459
ER -