Prediction of gestational age using urinary metabolites in term and preterm pregnancies

The Alliance for Maternal and Newborn Health Improvement (AMANHI), The Global Alliance to Prevent Prematurity and Stillbirth (GAPPS)

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC–MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value.

Original languageEnglish
Article number8033
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Prediction of gestational age using urinary metabolites in term and preterm pregnancies'. Together they form a unique fingerprint.

Cite this