TY - JOUR
T1 - Resilience
T2 - Key Factors Associated With Resilience of Older People in Botswana
AU - Mhaka-Mutepfa, Magen
AU - Shaibu, Sheila
N1 - Publisher Copyright:
© The Author(s) 2022.
PY - 2022/7
Y1 - 2022/7
N2 - This study aims to determine key factors that predict resilience in older people. A cross-sectional design and quantitative methods were used for this study. Four districts were selected in Botswana using cluster random sampling. Data on resilience from 378 older adults aged 60 years+ [Mean Age (SD) = 71.1(9.0)] was collected using snowballing technique. Data on socio-demographics, protective and risk factors were also collected from urban and rural areas. CHAID (Chi-squared Automatic Interaction Detection) analysis was used to predict the strengths of the relationships among resilience and all predictor variables because the data were skewed. Five major predictor variables reached significance to be included in the model: depression, QOL, social impairment, education, and whether participants paid for services or accessed free services, along with high self-esteem (p <.001), security, and self-efficacy (p <.05). The presence of depression symptoms (χ2 = 23.7, p =.001, df = 1) and self-esteem (χ2 = 39.6, p <.001) had the greatest influence on resilience. Older people with no depression symptoms but had low QOL still had social impairment (χ2 = 3.9, p <.05). Older people with no depression symptoms had moderate to high QOL but had low resilience as a result of paying for services (χ2 = 7.4, p <.02). Both protective and risk factors had a significant influence on resilience. Knowledge about the predictors of resilience in older people may assist stakeholders devise effective intervention, especially now with COVID-19 ravaging the country. Additionally, policies and programs inclined to assist older people may be established and implemented.
AB - This study aims to determine key factors that predict resilience in older people. A cross-sectional design and quantitative methods were used for this study. Four districts were selected in Botswana using cluster random sampling. Data on resilience from 378 older adults aged 60 years+ [Mean Age (SD) = 71.1(9.0)] was collected using snowballing technique. Data on socio-demographics, protective and risk factors were also collected from urban and rural areas. CHAID (Chi-squared Automatic Interaction Detection) analysis was used to predict the strengths of the relationships among resilience and all predictor variables because the data were skewed. Five major predictor variables reached significance to be included in the model: depression, QOL, social impairment, education, and whether participants paid for services or accessed free services, along with high self-esteem (p <.001), security, and self-efficacy (p <.05). The presence of depression symptoms (χ2 = 23.7, p =.001, df = 1) and self-esteem (χ2 = 39.6, p <.001) had the greatest influence on resilience. Older people with no depression symptoms but had low QOL still had social impairment (χ2 = 3.9, p <.05). Older people with no depression symptoms had moderate to high QOL but had low resilience as a result of paying for services (χ2 = 7.4, p <.02). Both protective and risk factors had a significant influence on resilience. Knowledge about the predictors of resilience in older people may assist stakeholders devise effective intervention, especially now with COVID-19 ravaging the country. Additionally, policies and programs inclined to assist older people may be established and implemented.
KW - Botswana
KW - aging
KW - health
KW - older people
KW - resilience
KW - wellbeing
UR - http://www.scopus.com/inward/record.url?scp=85139079129&partnerID=8YFLogxK
U2 - 10.1177/21582440221127145
DO - 10.1177/21582440221127145
M3 - Article
AN - SCOPUS:85139079129
SN - 2158-2440
VL - 12
JO - SAGE Open
JF - SAGE Open
IS - 3
ER -