Self-attentive Adversarial Stain Normalization

Aman Shrivastava, William Adorno, Yash Sharma, Lubaina Ehsan, S. Asad Ali, Sean R. Moore, Beatrice Amadi, Paul Kelly, Sana Syed, Donald E. Brown

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Hematoxylin and Eosin (H&E) stained Whole Slide Images (WSIs) are utilized for biopsy visualization-based diagnostic and prognostic assessment of diseases. Variation in the H&E staining process across different lab sites can lead to important variations in biopsy image appearance. These variations introduce an undesirable bias when the slides are examined by pathologists or used for training deep learning models. Traditionally proposed stain normalization and color augmentation strategies can handle the human level bias. But deep learning models can easily disentangle the linear transformation used in these approaches, resulting in undesirable bias and lack of generalization. To handle these limitations, we propose a Self-Attentive Adversarial Stain Normalization (SAASN) approach for the normalization of multiple stain appearances to a common domain. This unsupervised generative adversarial approach includes self-attention mechanism for synthesizing images with finer detail while preserving the structural consistency of the biopsy features during translation. SAASN demonstrates consistent and superior performance compared to other popular stain normalization techniques on H&E stained duodenal biopsy image data.

Original languageEnglish
Title of host publicationPattern Recognition. ICPR International Workshops and Challenges, 2021, Proceedings
EditorsAlberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, Roberto Vezzani
PublisherSpringer Science and Business Media Deutschland GmbH
Pages120-140
Number of pages21
ISBN (Print)9783030687625
DOIs
Publication statusPublished - 2021
Event25th International Conference on Pattern Recognition Workshops, ICPR 2020 - Milan, Italy
Duration: 10 Jan 202111 Jan 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12661 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Pattern Recognition Workshops, ICPR 2020
Country/TerritoryItaly
CityMilan
Period10/01/2111/01/21

Keywords

  • Adversarial learning
  • Stain normalization

Fingerprint

Dive into the research topics of 'Self-attentive Adversarial Stain Normalization'. Together they form a unique fingerprint.

Cite this