Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome

Rathi Prasad, Irene Hadjidemetriou, Avinaash Maharaj, Eirini Meimaridou, Federica Buonocore, Moin Saleem, Jenny Hurcombe, Agnieszka Bierzynska, Eliana Barbagelata, Ignacio Bergadá, Hamilton Cassinelli, Urmi Das, Go Sgene, Ruth Krone, Bulent Hacihamdioglu, Erkan Sari, Ediz Yesilkaya, Helen L. Storr, Maria Clemente, Monica Fernandez-CancioNuria Camats, Nanik Ram, John C. Achermann, Paul P. Van Veldhoven, Leonardo Guasti, Debora Braslavsky, Tulay Guran, Louise A. Metherell

Research output: Contribution to journalArticlepeer-review

130 Citations (Scopus)

Abstract

Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-offunction mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633-1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs6), and c.7dupA (p.S3Kfs11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/-mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/-mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.

Original languageEnglish
Pages (from-to)942-953
Number of pages12
JournalJournal of Clinical Investigation
Volume127
Issue number3
DOIs
Publication statusPublished - 1 Mar 2017

Fingerprint

Dive into the research topics of 'Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome'. Together they form a unique fingerprint.

Cite this