Suggested role of silent information regulator 1 (SIRT1) gene in female infertility: A cross-sectional study in Pakistan

Faiza Alam, Rehana Rehman, Syeda Sadia Fatima, Mussarat Ashraf, Taseer Ahmed Khan

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Aim & Objective: Silent information regulator 1 (SIRT1) gene stimulates the expression of antioxidants and repairs damaged cells. It affects the mitochondrial activity within the oocytes to overcome the oxidant stress. We aimed to assess an association of SIRT1 polymorphism (Tag SNPs rs10509291 and rs12778366) with fertility, and assess serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), oestradiol, progesterone, manganese superoxide (MnSOD) and SIRT1. Material and Methods: In this cross-sectional study, 207 fertile and 135 infertile subjects between the ages of 18-45 years were recruited. Polymerase chain reaction (PCR) was performed; products were electrophoresed in a 2% agarose gel. Descriptive analysis of continuous variables was expressed as mean ± standard deviation. Mann-Whitney test was performed for comparison of groups, P value <.001 was considered significant. Single Nucleotide Polymorphism (SNP) data were analysed by applying chi-squared statistics. Results: All subjects were age matched (P =.896). SIRT1 levels were significantly lower in infertile females when compared with fertile subjects (P <.001). AA (rs10509291) and CC (rs12778366) variant frequency was higher in the infertile than fertile subjects (P <.01). Similarly, the frequency of A allele (rs10509291) and C allele (rs12778366) was higher in infertile subjects (P <.001). Infertile females (29%) showed existence of SNP rs10509291 while 49% demonstrated genetic variation of rs12778366. MnSOD and SIRT1 levels were found to be lower in these subjects. Conclusion: The presence of SIRT1 genetic variants (rs10509291 and rs12778366) apparently disturbs the expression of SIRT1 deteriorating mitochondrial antioxidant function within the oocytes, instigating oxidative stress within. Their probable effect on modulating oocyte maturation may be the cause of infertility in females.

Original languageEnglish
Article numbere14132
JournalInternational Journal of Clinical Practice
Issue number6
Publication statusPublished - Jun 2021


Dive into the research topics of 'Suggested role of silent information regulator 1 (SIRT1) gene in female infertility: A cross-sectional study in Pakistan'. Together they form a unique fingerprint.

Cite this