TY - JOUR
T1 - Synthesis, characterization, and evaluation of the antifungal properties of tissue conditioner incorporated with essential oils-loaded chitosan nanoparticles
AU - Ashraf, Hina
AU - Gul, Hashmat
AU - Jamil, Bushra
AU - Saeed, Asfia
AU - Pasha, Mehwish
AU - Kaleem, Muhammad
AU - Khan, Abdul Samad
N1 - Publisher Copyright:
© 2022 Ashraf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/8
Y1 - 2022/8
N2 - Purpose This study aims to investigate new tissue conditioner (TC) formulations involving chitosan nanoparticles (CSNPs) and essential oils (EO) for their antifungal potential, release kinetics, and hardness. Materials and methods CSNPs were synthesized, and the separate solutions of CSNP were prepared with two types of EO, i.e., Oregano oil and Lemongrass. The EO was loaded separately in two concentrations (200 μL and 250 μL). The blank and EO-loaded CSNPs were screened against Candida albicans (C. albicans), and their minimum inhibitory concentration was established. GC Reline™ (GC corporation, USA) TC was considered a control group, whereby the four experimental groups were prepared by mixing CSNPs/EO solutions with TC powder. The antifungal effectiveness (C. albicans) and release kinetics behavior (1–6 h, 24 h, 48 h, and 72 h) was investigated. The Shore A hardness of control and experimental groups was evaluated in dry and wet modes (deionized water and artificial saliva). For statistical analysis, SPSS version 22 was used to do a one-way ANOVA post-hoc Tukey’s test. Results Compared to the control group, TCs containing blank CSNPs and CSNPs loaded with EO showed 3 and 5 log reductions in C. albicans growth, respectively. A significantly high antifungal effect was observed with TC containing lemongrass essential oil (200 μL). The continuous release of EO was detected for the first 6 hours, whereas completely stopped after 48 hours. Mean hardness values were highest for dry samples and lowest for samples stored in artificial saliva. The statistically significant difference within and between the study groups was observed in mean and cumulative essential oils release and hardness values of TCs over observed time intervals irrespective of storage media. Conclusion TCs containing essential-oil-loaded CSNPs seem a promising alternative treatment of denture-induced stomatitis, however, a further biological analysis should be taken.
AB - Purpose This study aims to investigate new tissue conditioner (TC) formulations involving chitosan nanoparticles (CSNPs) and essential oils (EO) for their antifungal potential, release kinetics, and hardness. Materials and methods CSNPs were synthesized, and the separate solutions of CSNP were prepared with two types of EO, i.e., Oregano oil and Lemongrass. The EO was loaded separately in two concentrations (200 μL and 250 μL). The blank and EO-loaded CSNPs were screened against Candida albicans (C. albicans), and their minimum inhibitory concentration was established. GC Reline™ (GC corporation, USA) TC was considered a control group, whereby the four experimental groups were prepared by mixing CSNPs/EO solutions with TC powder. The antifungal effectiveness (C. albicans) and release kinetics behavior (1–6 h, 24 h, 48 h, and 72 h) was investigated. The Shore A hardness of control and experimental groups was evaluated in dry and wet modes (deionized water and artificial saliva). For statistical analysis, SPSS version 22 was used to do a one-way ANOVA post-hoc Tukey’s test. Results Compared to the control group, TCs containing blank CSNPs and CSNPs loaded with EO showed 3 and 5 log reductions in C. albicans growth, respectively. A significantly high antifungal effect was observed with TC containing lemongrass essential oil (200 μL). The continuous release of EO was detected for the first 6 hours, whereas completely stopped after 48 hours. Mean hardness values were highest for dry samples and lowest for samples stored in artificial saliva. The statistically significant difference within and between the study groups was observed in mean and cumulative essential oils release and hardness values of TCs over observed time intervals irrespective of storage media. Conclusion TCs containing essential-oil-loaded CSNPs seem a promising alternative treatment of denture-induced stomatitis, however, a further biological analysis should be taken.
UR - http://www.scopus.com/inward/record.url?scp=85137009393&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0273079
DO - 10.1371/journal.pone.0273079
M3 - Article
C2 - 35984775
AN - SCOPUS:85137009393
SN - 1932-6203
VL - 17
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0273079
ER -